Class- X Session- 2022-23
 Mathematics (Standard) TARUN CLASSES OF MATHEMATICS

Time Allowed: 3 Hrs.
General Instructions:

1. This Question Paper has 5 Sections A-E.
2. Section A has 20 MCQs carrying 1 mark each
3. Section B has 5 questions carrying 02 marks each.
4. Section C has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

8.	If $4 \tan \theta=3$, Find the value of $: \frac{4 \sin \theta-3 \cos \theta}{4 \sin \theta+3 \cos \theta}$. (a) 0 (b) $1 / 3$ (c) $2 / 3$ (d) $3 / 4$	
9.	If $P A, Q B$ and $R C$ are each perpendicular to $A C . I f x=8 \mathrm{~cm}$ and $z=6 \mathrm{~cm}$, then y is equal to (a) $56 / 7$ (b) $7 / 56$ (c) $25 / 7$ (d) $24 / 7$.	
10.	If $\tan \alpha+\cot \alpha=2$, then value of $\sin ^{3} \alpha+\cos ^{3} \alpha$ (a) $\frac{1}{2}$ (b) 1 (c) $\sqrt{2}$ (d) $\frac{\sqrt{2}}{2}$	
11.	$A B C D$ is a trapezium with $A D \\| B C$ and $A D=4 c m$. If the diagonals $A C$ and $B D$ intersect each other at O such that $A O / O C=D O / O B=1 / 2$, then $B C=$ (a) 6 cm (b) 7 cm (c) 8 cm (d) 9 cm	
12.	AT is a tangent to the circle with centre O such that $\mathrm{OT}=4 \mathrm{~cm}$ and $\angle \mathrm{OTA}=30^{\circ}$. Then AT is equal to if A is point of contact (A) 4 cm (B) 2 cm (C) $2 \sqrt{3} \mathrm{~cm}$ (D) $4 \sqrt{3} \mathrm{~cm}$	
13.	If $A(4,-2), B(7,-2)$ and $C(7,9)$ are the vertices of a $\triangle A B C$, then $\triangle A B C$ is (a) equilateral triangle (b) isosceles triangle (c) right angled triangle (d) isosceles right angled triangle	
14.	If the perimeter of a circle is equal to half of a square, then the ratio of their areas is (A) $22: 7$ (B) $7: 11$ (C) $7: 22$ (D) $11: 7$	
15.	If X, M and Z are denoting mean, median and mode of a data and $X: M=9: 8$, then the ratio $M: Z$ is (a) $3: 4$ (b) $4: 9$ (c) $4: 3$ (d) $2: 5$	
16.	The minute hand of a clock is 84 cm long. The distance covered by the tip of minute hand from 10:10 am to $10: 25 \mathrm{am}$ is (a) 44 cm (b) 88 cm (c) 132 cm (d) 176 cm	
17.	Two dice are rolled simultaneously. What is the probability that 5 will come up at least once? (a) $1 / 6$ (b) $7 / 36$ (c) $11 / 36$ (d) $5 / 13$	
18.	A medicine-capsule is in the shape of a cylinder of diameter 0.5 cm with two hemispheres stuck to each of its ends. The length of entire capsule is 2 cm . The capacity of the capsule is (A) $0.36 \mathrm{~cm}^{3}$ (B) $0.35 \mathrm{~cm}^{3}$ (C) $0.34 \mathrm{~cm}^{3}$ (D) $0.33 \mathrm{~cm}^{3}$	

19.	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): If product of two numbers is 5780 and their HCF is 17, then their LCM is 340 Statement R(Reason) : HCF is always a factor of LCM (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.
20.	Statement A (Assertion): If the co-ordinates of the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ are $D(3,5)$ and $E(-3,-3)$ respectively, then $B C=20$ units Statement R (Reason) : The line joining the mid points of two sides of a triangle is parallel to the third side and equal to half of it. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.
	SECTION B Section B consists of 5 questions of 2 marks each.
21.	Draw the graphs of the pair of linear equations $x-y+2=0$ and $4 x-y-4=0$. Calculate the area of the triangle formed by the lines so drawn and the x-axis .
22.	A girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
23.	The wheel of a motor cycle is of radius 35 cm . How many revolutions per minute must the wheel make so as to keep a speed of $66 \mathrm{~km} / \mathrm{h}$? OR $A B C D$ is a trapezium with $A B\|\mid D C, A B=18 \mathrm{~cm}, D C=32 \mathrm{~cm}$ and distance between $A B$ and $D C=14 \mathrm{~cm}$. If arcs of equal radii 7 cm with centres A, B, C and D have been drawn, then find the area of the shaded region of the figure.
24.	Prove that : $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$. OR If $\sec \theta+\tan \theta=p \quad$, Prove that $: \sin \Theta=\frac{p^{2}-1}{p^{2}+1}$.

25.	$A B$ is a diameter and $A C$ is a chord of a circle with centre O such that $\angle B A C=30^{\circ}$. The tangent at C intersects extended $A B$ at a point D. Prove that $B C=B D$.
	SECTION C Section C consists of $\mathbf{6}$ questions of $\mathbf{3}$ marks each.
26.	Given that $\sqrt{ } 3$ is irrational, prove that $5+2 \sqrt{ } 3$ is irrational.
27.	If $\alpha \& \beta$ are the zeroes of the polynomial $3 x^{2}+k x+3 \& \alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$, then find the value of k. Hence find polynomial whose zeroes are reciprocal of zeroes of given polynomial.
28.	A railway half ticket costs half the full fare, but the reservation charges are the same on a half ticket as on a full ticket. One reserved first class ticket from the station A to B costs Rs 2530 . Also, one reserved first class ticket and one reserved first class half ticket from A to B costs Rs 3810. Find the full first class fare from station A to B, and also the reservation charges for a ticket. OR . A shopkeeper sells a saree at 8% profit and a sweater at 10% discount, thereby, getting a sum Rs 1008 . If she had sold the saree at 10% profit and the sweater at 8% discount, she would have got Rs 1028. Find the cost price of the saree and the list price (price before discount) of the sweater.
29.	Prove that : $\frac{(1+\cot \mathrm{A}+\tan \mathrm{A})(\sin \mathrm{A}-\cos \mathrm{A})}{\sec ^{3} \mathrm{~A}-\operatorname{cosec}^{3} \mathrm{~A}}=\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~A}$
30.	$P Q$ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T. Find the length TP. OR i) $\quad X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$ ii) From a point P, two tangents $P A$ and $P B$ are drawn to a circle $C(0, r)$. If $O P=2 r$, then find $\angle A P B$. What type of triangle is APB ?

31.	2 Black Kings \& 2 red Jacks are removed from pack of 52 cards. One card is drawn from rest of cards, what is Probability that drawn card is : i) Neither king nor queen ii) Either face card or Heart iii) Either king or Spade										
	SECTION D Section D consists of 4 questions of 5 marks each.										
32.	A trader bought a number of articles for Rs. 900 , five articles were found damaged. He sold each of the remaining articles at Rs. 2 more than what he paid for it. He got a profit of Rs. 80 on the whole transaction. Find the number of articles he bought. OR Two pipes running together can fill a cistern in $3 \frac{1}{13}$ minutes. If one pip e takes 3 minutes more than the other to fill it, find the time in which each pipe would fill cistern.										
33.	Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio. median PM of another triangle PQR. Show that $\triangle A B C \sim \triangle P Q R$.										
34.	A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of the cone is 4 cm and the diameter of the base is 8 cm . Determine the volume of the toy. If a cube circumscribes the toy, then find the difference of the volumes of cube and the toy. Also, find the total surface area of the toy. OR Due to heavy floods in a state, thousands were rendered homeless. 50 schools collectively decided to provide place and the canvas for 1500 tents and share the whole expenditure equally. The lower part of each tent is cylindrical with base radius 2.8 m and height 3.5 m and the upper part is conical with the same base radius, but of height 2.1 m . If the canvas used to make the tents costs $₹ 120 \mathrm{per} \mathrm{m}^{2}$, find the amount shared by each school to set up the tents.										
35.	The median of the data is 52.5 , Find $\mathrm{x} \& \mathrm{y}$, If the total frequency is 100.										
	Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	$\begin{aligned} & \hline 90- \\ & 100 \\ & \hline \end{aligned}$
	Frequency	2	5	x	12	17	20	y	9	7	
	Hence find the Mean \& Mode of data.										
	SECTION E Case study based questions are compulsory.										

